Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling
نویسندگان
چکیده
An improved understanding of the pluripotency maintenance of embryonic stem (ES) cells is important for investigations of early embryo development and for cell replacement therapy, but the mechanism behind pluripotency is still incompletely understood. Recent findings show that zinc, an essential trace element in humans, is critically involved in regulating various signaling pathways and genes expression. However, its role in ES cell fate determination remains to be further explored. Here we showed that 2μM zinc chloride (ZnCl2) transiently maintained mouse ES cell pluripotency in vitro. The cultured mouse ES cells remained undifferentiated under 2μM ZnCl2 treatment in leukemia inhibitory factor (LIF) withdrawal, retinoic acid (RA) or embryoid bodies (EBs) differentiation assays. In addition, ZnCl2 increased pluripotency genes expression and inhibited differentiation genes expression. Further mechanistic studies revealed that ZnCl2 transiently activated signal transducers and activators of transcription 3 (Stat3) signaling through promoting Stat3 phosphorylation. Inhibition of Stat3 signaling abrogated the effects of ZnCl2 on mouse ES cell pluripotency. Taken together, this study demonstrated a critical role of zinc in the pluripotency maintenance of mouse ES cells, as well as an important regulator of Stat3 signaling.
منابع مشابه
Foxm1 Mediates LIF/Stat3-Dependent Self-Renewal in Mouse Embryonic Stem Cells and Is Essential for the Generation of Induced Pluripotent Stem Cells
Activation of signal transducer and activator of transcription 3 (Stat3) by leukemia inhibitory factor (LIF) is required for maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). Here, we have confirmed transcription factor Forkhead Box m1 (Foxm1) as a LIF/Stat3 downstream target that mediates LIF/Stat3-dependent mESC self-renewal. The expression of Foxm1 relies on LI...
متن کاملSp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal
Activation of signal transducer and activator of transcription 3 (STAT3) by leukemia inhibitory factor (LIF) maintains mouse embryonic stem cell (mESC) self-renewal. Our previous study showed that trans-acting transcription factor 5 (Sp5), an LIF/STAT3 downstream target, supports mESC self-renewal. However, the mechanism by which Sp5 exerts these effects remains elusive. Here, we found that Nan...
متن کاملGbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state.
Activation of signal transducer and activator of transcription 3 (Stat3) by leukemia inhibitory factor (LIF) maintains mouse embryonic stem cell (mESC) self-renewal and also facilitates reprogramming to ground state pluripotency. Exactly how LIF/Stat3 signaling exerts these effects, however, remains elusive. We identified gastrulation brain homeobox 2 (Gbx2) as a LIF/Stat3 downstream target tha...
متن کاملNovel Role of Mitochondrial Manganese Superoxide Dismutase in STAT3 Dependent Pluripotency of Mouse Embryonic Stem Cells
Leukemia Inhibitory Factor (LIF)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway maintains the stemness and pluripotency of mouse embryonic stem cells (mESCs). Detailed knowledge on key intermediates in this pathway as well as any parallel pathways is largely missing. We initiated our study by investigating the effect of small molecule Curcumin on various signalling...
متن کاملJAK-STAT3 and somatic cell reprogramming
Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is cent...
متن کامل